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CHAPTER 1

INTRODUCTION

In this thesis a comparison of simulated and predicted

performance of a complex crosscorrelation receiver against a range

spread scatterer is discussed. Performance is measured by the ratio

of the receiver output signal energy to receiver output for noise

only. This ratio can be predicted assuming analytic expressions for a

singly spread target scattering function and the transmit and receiver

waveforms. The signal-to-noise ratio, at the output of the receiver

SNR, is examined as a function of receiver integration time, for a

fixed input SNR. The prediction equation was developed by Ricker, and

is derived In terms of the range spread function and the receiver

crossambiguity function [1]. The simulation is a digital

implementation of the assumed target and signal models.

Two variations of the specific scattering model are considered.

The first target consists of both a low amplitude continuous

scattering component, and two large amplitude point reflectors. In

this model, the low level continuous scatterer is represented as a
dL

sequence of closely spaced point reflectors, whose reflection

characteristics are random samples from uncorrelated Gaussian

processes [2]. A second scattering model adds varying degrees of - l

correlation to the continuous scatterer by filtering the uncorrelated

sequence. The degree of correlation is inversely proportional to the

bandwidth of the filter used, while the actual shape of the filter

" .... "..,

* ' .- - . -, - * ' _._ -_'" ' ' "__ % . J,_ .,- ' ' . . . """• """ " " " " • •_.9. ...
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response is relatively unimportant. SNR comparisons between the

simulated correlated scattering values and the predicted levels,

assuming uncorrelated scattering, for several filter bandwidths will

be discussed.

Chapter 2 presents the analytic model for the range spread

scattering function and receiver. The amplitude of the scattered

signal is the convolution of the transmit pulse with the impulse

response of the random target. For the thesis, it is assumed the IN. J.

medium may be modeled as a single deterministic propagation path with N

any randomness in the received signal due solely to the scattiring

process. The specific target model is characterized by a range spread

scatterer [3]. The median reflection characteristics of the scatterer

are specified by the range scattering function, S(r), and is a

function of delay only. The scattering function to be examined

consists of two independent components, a low level continuous \ .

scatterer and a set of distinct, high amplitude point reflectors.

The response of the receiver to this signal is measured by the

crossambiguity function, defined as the magnitude squared of the

crosscorrelation between transmit and receiver processing signals. To

simplify the form of the ambiguity function, both signals are assumed -.--

to be cosine pulses of frequency w . The transmit pulse length is -.

Ts . and the processing length T, where it is assumed

Ts. Further, it is assumed target scattering process does not

spread the signal in frequency, and for convenience, the scatterer
, % *
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velocity is assumed to be zero. At zero Doppler and delay, the ...

cross-ambiguity function reduces to simply the ratio of the transmit

pulse length to the receiver integration time; i.e., T /T.
5

Clearly, if the scattering function were an ideal point

reflector, the received signal would be simply a tim delayed version

of the transmit pulse, and the optimum receiver integration time

corresponds to T - Ts [4]. When the received signal is spread in

time by the scattering process, this receiver integration time is
** . .p

suboptimum, or "mismatched." The performance, as measured by the

signal-to-noise at the receiver output, will increase for some longer

integration time, T, that best matches the received signal duration.

The simulation of the scattered signal and receiver are

discussed in Chapter 3. Both models are derived from VanTrees [5].

The scattering function is obtained by combining the models for a

range spread scatterer and a slowly fluctuating point target. The

continuous scattering component is modeled as many closely, and , .

equally, spaced point reflectors. The amplitudes of these reflectors

are uncorrelated, complex Gaussian numbers of equal variance. The

point reflectors are modeled by two uncorrelated, complex Gaussian
.' %°

numbers, with large variances compared to the continuous scatterers.

For convenience, the point reflectors are placed along the scatterer

so that the signal reflected from these points are separated by at

least a transmit pulse length, i.e., the reflections from the point

scatterers are resolved by the transmit pulse.

i-' -..-
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The receiver model used is shown in Figure 1. The reception, of

either the reflected signal, or noise, is multiplied by the complex
%.. .

conjugate of the receiver processing signal, g(t), Integrated and

squared. It is assumed the signal and noise are uncorrelated,

allowing the signal-to-noise ratio 1o be formed by passing the signal

and noise through the receiver separately. By averaging many

simulation outputs for signal or noise, a comparison statistic for the

ambiguity function analysis may be generated.

A comparison of the simulated SNR, and that predicted by the
..1

ambiguity function analysis is presented in Chapter 4. The three

combinations of the scattering model are 1) continuous scatterer, 2)

composite scatterer, with both the continuous scatterer and point

reflectors, and 3) point reflectors only. All comparisons are

presented as a function of the ratio of the processing time, T, to

transmit pulse length, T . The agreement between simulation and

prediction is quite good, with an average difference of roughly 0.5 6

dB, independent of the specific type of scatterer, or the value of

T/T
S

Chapter 5 examines the effects of adding correlation to the

continuous scattering component. Correlation is added by filtering

the uncorrelated continuous scattering sequence, with the filter

bandwidth inversely proportional to the degree of correlation in the

filtered sequence. Comparing the predicted SNR with simulated values, -.-

.1-
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FIGURE 1. Block diagram of complex crosscorrelation
receiver. -
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the quality of comparison decreases with decreasing filter bandwidth,I or increasing correlation in the continuous scattering component. The
correlated scatterer increases the received signal energy since the

scattered signal now contains a coherent component as well as the

random scatter. For very narrow bandwidths, the coherent return is £-i*

large, and the simulated SNR is greater than the prediction for all

values of T/T.

The effects of correlation on the continuous scatterer In the

compnsite target is also compared with predicted StIR, assuming

uncorrelated scattering. For a small degree of correlation, the

comparison between simulated and prediction is affected only for data

prior to the first point scatterer return. As with the continuous

scatterer only comparisons, the simulated values are higher than the

prediction, but this effect is overshadowed by the point scatterer K
returns for relatively wide filter bandwidths. For the very narrow

bandwidth, the correlated, or coherent, scatterer energy obscures even

the point scatterer returns, with differences between simulation and

prediction as great as 11 d8. As with the correlated continuous

A scatterer only, the added energy due to the correlated scatterers is

independent of T/T
s

A summoary of the major sections of this thesis is presented in

Chapter 6. A number of areas for additional research are also

discussed.
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CHAPTER 2

MODEL ANALYSIS USING SCATTERING AND AMBIGUITY FUNCTIONS
S... .

4.V

2.1 Introduction

This chapter develops the analytic models for a range spread - ..-*

scatterer and complex correlation receiver. By specifying the form of

the scattering function, transmitted pulse and receiver processing

signal, the expected performance of the receiver may be evaluated

analytically in terms of the scattering function and receiver

ambiguity function. Performance is measured in terms of the receiver

output SNR, for a given transmit pulse length Ts, and receiver

processing time. T..'".-

2.2 Complex Envelopes and Narrowband Signals .4.

.'.4%-.

The waveforms considered in this thesis are restricted to the real

signals that satisfy the relation

s(t) *Re 1(~ Wct(2.1)cI c
where ?(t) is the complex envelope of the signal, s(t), and Wc is .'4.t

the signal carrier frequency in radians/second. These signals have

Fourier transforms centered about t wc. and are referred to as

narrowband [6]..: " "-: .' '
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A property of narrowband signals is that the complex envelope is

a slowly varying function compared to the carrier frequency. It is

convenient to use the complex envelope for linear filter operations,

and then take the real part of the output to recover the real output

signal []. The narrowband signals of concern in this thesis are the

transmit signal, f(t), and the receiver processing signal, g(t).

Further it is assumed that both signals are pulsed cosines of the form;

f(t) - g(t) - Re ,AeC 0 < t < (2.2)

= 0 , elsewhere .

where A represents the constant signal amplitude. These signals are

energy normalized by assuming

f(t) dt 1 (2.3)

0

Combining Equations 2.2 and 2.3 yields

f(t) - - Re , 0 < t < T (2.4)

;Ti

2.3 The Range Scattering Function

2.3.1 Definition. The received signal is assumed to be the

convolution of the transmit waveform f(t), with one realization of the

time varying impulse response. While in general, the scattering

l -.
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process may disperse the transmit signal in both time and frequency,

the scatterer is considered to be stationary in this thesis. The

reflected signal is delayed and temporally dispersed without any

Doppler, or frequency spread. This type of scattering process is

referred to as range-spread [8].

J -1

A physical model of the range-spread scatterer might be a line

segment whose surface is random and rough compared to the wavelength

of the transmit signal. The signal reflected from any increment, AL,

along the scatterer is

1yt -r, b(&r) (2.5)

where ET is the energy in the transmit pulse, and T(t- r) is the

T"

complex envelope of the transmit signal, delayed byr. b(at) is-a I',

...-

sample function from a random reflection process and AT- 2AL/c, and c -

is the speed of sound.

The projected extent of the scattering function is assumed to be

much greater than the transmit pulse length and independent of aspect

angle. The reflected signal is then of greater duration than the ,

transmit pulse, or spread in range by the target. The reflected

signal is the superposition from many locations along the target. The

signal at some time t is written,

N XN

s(t) -# E 7(t-r 1 ) Si (rI) aTi (2.6)

1=1"%
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where a'r1 represents the time delay from the AL1 increment along

the target. It is assumed that the number of scatterers along any

increment is large so that ~()is a sample function from a complex

Gaussian process (9].

The statistics of the received signal are completely specified by

the mean value and the covariance function of the random range spread

scatterer 6(-r). The covariance function of the reflection process,

K .. 1  is defined as (10]

,A.- ].. ;

K(-r E )b(-)b (Tl)~ (2.7)

The model is simplified further by assuming the reflection process is

A:;.....

zero mean [11], and spatially uncorrelated. Equation 2.7 may then be

written as,

- (ri)*E lQ)2 (2.8)

The range scattering function may now be defined as (12],

SR) E 2(2.9)

The correlation function of the reflected signal in the absence

of noise is,-.

k E (2.10)

sI

I- ,.

S ..., * " A °



11 k - X

T T
= E 1E T(t-'r)b(1)dT *(t -Tr1 )b (-r,)d'r (2.11)

T

- E ET f (t-.)T (t SR(r)d. , (2.12)

for a scattered signal of duration TT where TT > Ts. The total

energy in the signal reflected from a zero Doppler scatterer is [13]

%°.%

T I T
4. fTER  (-,r)dT - E T SR(1*)d-j (2.13)

From Equation 2.13, note that the scattering function at any time

delay, r, represents the average energy reflected from a portion of

the target at range, r = c ?/2.

2.3.2 Composite Range Scattering Function. The particular

scattering function of interest consists of two independent, random

components. The first is a continuous scatter, characterized by a

scattering density, P(. The scattering function for the continuous

component is a constant, or

S CS( P E (2.14)

where p[ is in units 1/seconds. The second scattering process is a

set of large amplitude point scatterers. The point scattering

function is

_. 4.
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N
SHI(r)- Et 6(r-"r) (2.15)

thwhere Et represents the energy scattered from the i point

" scatterer. The total target scattering function is then, % %

AN

SR('r) - E + E1(r-r) (2.15)1-1 """

Figure 2 is an example plot of the composite target scattering

function for comparatively large point scatterer amplitudes and a low

continuous scatter amplitude. Convolution of the scattering function

and a 10 millisecond transmit pulse yields the reflected signal shown

at the bottom of the figure.

2.4 Receiver Ambiguity Function

2.4.1 Receiver Model. The receiver used to process the signal
reflected from the composite scatterer is shown in Figure 1, and is

defined by VanTrees as the complex correlation receiver [14]. For

detection, the reflected signal is multiplied by the conjugate of the

receiver processing waveform, g(t), integrated for a time T, magnitude

squared, and the output compared with a threshold.

""...
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FIGURE 2. Magnitude of the composite scattering
function (top), and reflected signal (bottom).
Note the difference between the time axes.

p. -F.

,- 
2r.,

.... 
. -" ", - X - - -:



14

The performance of the receiver is calculated as a function of

the integration time to pulse length ratio, T/T s _ 1, and is

measured by the ratio of the mean signal energy to mean noise energy

at the receiver output. The output SNR is then defined as

SNR - EIs(t)s (t (2.17)[ In(l:)n I1:)l "-

Noise is assumed to be a white, band limited, Gaussian noise of

power spectral density N. The output noise energy is
0'

EN - N 0 g(t)f2 dt - N, (2.18) .. :.,

which is numerically equal to the the spectral density by Equation 2.3. '

2.4.2 Receiver Ambiguitv Function. A measure of the receiver

response to a returned signal is the crossambiguity function defined as

(t- T )'(t Ju)ejt 2 (2.19)

Note that the term

- (t-)g*(t) ejWt dt (2.20)
--

is the crosscorrelation of the transmit and processing signals, and

indicates the "match* between the reflected signal and transmit signal

*" -,'
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For the assumed trapsmit signal and receiver ,uodel, Equation 2.2,

the crossambiguity function is derived in Appendix A as

T ____(A-9)
lxT,)2 sin 2

where , and .' are defined in Appendix A for zero Doppler. Equation

A-9 reduces to simply T/Ts, a constant.

The signal-to-noise ratio may now be written in terms of the 
'

.
'
*

scattering and ambiguity functions as,

11 ,111 e7 ) dr 2.1

SNR ( SR( r d? (2.21)

Substituting Equation 2.16 into 2.21 yields

TT

SNR E 1 (2.22)

No

I PE Ts TT T Ts Eit  (2.23) . .No T T 1

b-. '.%

., -. % ,
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Equation 2.23 predicts the mean signal 
to mean noise ratio as a 

.

function of transmit and processing pulse lengths. It may be 6j

,, evaluated numerically by knowing the scattering strengths PE and

E for a particular scatterer.
p .

.r 41
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CHAPTER 3

SIMULATION OF TARGET AND RECEIVER MODELS

3.1 Simulation of the Composite Scattering Function

3.1.1 Simulation of a Continuous Scatterer. The model for a

range spread scatterer from VanTrees [16] is used to simulate the

continuous scatterer. The continuous scatterer is modeled as a line

of equl-spaced point scatterers, each with a random amplitude drawn

from independent zero-man, complex, Gaussian processes with variance,

* A complex Gaussian process is defined as
*cs*I. *

?1(n) -R(n) + j IF()(3.1)

where rR and r1 are sample functions from real Gaussian

RR Ivariables. It is assumed that 7l and 7' are uncorrelated, so that ""]'b

R I.

E r (n)r - 0, for I # j , (3.2)

The continuous scatterer is approximated by 1000 point

scatterers, each of variance u and separated by 1/fs - .01

Ms. where fs is the digital sampling frequency in Hertz. The

variance of each point in the continuous scatterer is related to the

continuous scattering density, PE' by

*2 ~2

cs f s (3.3)

E " CS S "*" '. '
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3.1.2 Simulation of Point Scatterers. The model for the point

scattering component is the slowly fluctuating point target, defined

by VanTrees [17]. The simulation model is specified by fixing the

location of the point scatterers along the length of the continuous

scatterer. For the purposes of this thesis, the point scatterers are

4 fixed at sample locations 300 and 700. on the 1000 sample continuous

scatterer. It is assumed the amplitudes of the point scatterers are

sample functions of zero mean, uncorrelated Gaussian process, with

equa caclt th nrg elcted from the point scatterers, the

length of the transmit pulse is restricted to

T5 < 2 -0-30 40 ms (3.4) .

where 300 and 700 are the sample numbers corresponding to the location

of the two point scatterers. Equation 3.4 implies the transmit pulse4

length is short enough to resolve the point reflections, though not

the scatterers in the continuous scatterer, and the average energy in

N point scatterer reflections is then N times the energy of a single

point reflection.

OP
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3.2 Generation of Simulated and Predicted SNR

3.2.1 Simulation of Reflected Signal. To generate the simulated

signal reflection fronm the composite scatterer, many realizations of

the random scattering process, whose mean reflection characteristics

ofthis random process is obtained from a Gaussian random number

generator, described in Appendix B, assuming zero mean, and a standard A
deviation of @c~GIor a., depending on the scattering

component required. To simulate the composite scatterer in noise, the

outputs of three independent random number sequences. one for each

random component, are added to form a single realization of the random -

p composite scatterer. The envelope of the transmit signal is the

convolved with this random sequence to produce a representation of the

signal reflected from the random, range-spread, composite scatterer.

This signal is passed through the correlation receiver, and the ..

average of many receiver outputs compared to the predicted output.

The convolution is accomplished by Fourier transforming the transmit

and scattering sequences, multiplying them together, and performing an .

inverse Fourier Transform. The size of the FFT is determined by

NFFT -2 [LOG1O(NT +NTAR)/ALOG(2)] 1 (3.5)

Ile
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where NT$- Ts-f s and NTAR 1000. The result is a sequence

1099 samples long, with samples 300 to 400 and-700 to 800 representing

the point reflector returns. Table 1 lists the simulation parameters

that are constant for all runs, including the durations of the

transmit signal and continuous scatterer.

Noise is assumed to be zero mean, white and Gaussian. It is

simulated identically to the continuous scattering sequence discussed

in Section 3.1.1, with the noise spectral density equal to the

variance of each point in the random noise sequence. r. .

The simulation of sequences of random numbers, both for the

scattering process and noise is discussed in Appeddix B.

3.2.2 Generation of Simulated and Predicted SNR. To calculate

the simulated SNR, each realization of the reflected signal is passed

through the digital equivalent of the receiver shown in Figure 1, for

a given number of samples NT, where NT - Tf s . 3 realizations of

the signal, and 3 realizations of noise are passed through the

receiver separately, with the mean signal-to-noise ratio computed by

I

SK (3.6)
SNR --L

K-1

'I "e . ' . -
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Table 1 - Constant Simulation Scattering and Receiver Model Parameters.
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- Continuous scatterer length = 100 ms
- Transmit pulse length = 10 ms
- Sampling rate - 10000 Hz
- Number of highlight scatterers a 2
- Location of highlights = 30 and 70 ms
- Minimum Receiver Integration Time - 10 ms
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where I is the Kth receiver output for signal only and

I12 KI's the KI- output for noise only.

The predicted SNR Is evaluated by relating the terms in the

SNR prediction equation, Equation 2.23, to the variance of each of the

scattering and noise variances, or *'r

pT

SNR 2 T + N 2 (37)
aN2 [cs s HIH

where N is the number of samples of the point scatterer returned in

the interval [O,T] and 0 < N/NTS < 2. i2 is the variance of the
N

zero mean, Gaussian, noise process.

As noted earlier, the range of T/T values discussed in the

thesis are between 1 and 11. For simplicity, it is assumed that any

bulk delay in the reflected signal is known, so that the receiver *

begins processing the reflected signal at the onset of the continuous

scatterer return, T/Ts - 0. The first comparison between simulation

and Equation 3.7 is made at T/Ts  1, after an entire transmit pulse

duration has been processed through the correlation receiver. This

method of fixing the processing start time is followed throughout the

p, -'° 'S. 
,

P, ~..+
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thesis, whether the continuous scatterer return is present or not. In

particular, the examples shown in Section 4.3, point scatterers in

noise, begin at T/Ts - 4, one transmit pulse length after the first

point reflector return at T/T - 3, with the receiver output from

T/Ts - 1 to T/Ts a 2.5 representing noise only.

.

In addition, the energy in the signal reflected from the

continuous scatterer is not constant with increasing integration time,

as implied by in Equation 3.3, and the relationship of the continuous

scattering variance to the continuous scattering density must be

modified to account for the time spread of the reflected signal. The

received signal is the convolution of the transmit signal, say N

points long, and the target, N points long, where N > N. The resulting

sequence is N+N-l long. In Figure 2, note that the received signal

duration is roughly 0.11 sec. for a scattering function 0.1 sec long

and a 0.01 sec transmit pulse. The variance of the signal, assuming '.,

uncorrelated point scatterers is

N2  s 2 = M*N 2cs (3.8)
1-1

However, the leading and trailing edges are ramp functions of the form

2 N 2EOGE - " (N+l) Gcs (3.9)

% % "

,o.°

...... '.-
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The variance of the first N samples of the reflected signal, for

a transmit pulse length of N samples, is not N. 0 C but,

2 3 N2
0EDGE -(N 2 (N+1)) d c (3.10)

Equations 3.9 and 3.10 are then used as corrections for calculations

of the continuous scattering energy in Equation 3.7.
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CHAPTER 4

COMPARISON OF PREDICTED AND SIMULATED SNR

4.1 Introduction|~

4.1.1 Introduction. In this chapter, the comparison of the

predicted and simulated SNR is presented. Fourteen combinations of

scattering strength parameters are presented. These cases cover small

and large point scatterer reflectivities, and both high and low

signal-to-noise. The standard deviation of the scattering strength

parameters are listed in Table 2, along with some statistics of the

differences between predicted and simulated SNR. The constants for

all the simulation trials are transmit pulse length, Ts, continuous

scatterer duration, point scatterer position along the continuous

scatterer and the number of independent realizations of the model

averaged to compare with the SNR predicted from Equation 3.8. .

Table 2 lists the scattering strength parameters and some

statistics of the differences between predicted and average simulation

SNR, for the fourteen scattering strength parameters examined.

Columns 2-4 list the standard deviation of the scattering and noise

components of Equation 3.7. Columns 5-7 list the maximum difference

between simulation and prediction, the geometric mean difference

between prediction and simulation, and the standard deviation of the

difference, respectively, for each set of scattering strength
" %.*t r

~parameters.

-'-.
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TABLE 2- Scattering Strength Parameters and Statistics of Differences V.-
between Simulated and Predicted and Simulated Signal-to-Noise Ratios .
for 14 Combinations of Scattering Strength Parameters.

STANDARD DEVIATION OF
SCATTERING DIFFERENCES BETWEEN
PARAMETERS MODEL AND THEORY ... ..

(Average of all values
of T/Ts .)

CASE NO. acs OHI ON MAX MEAN ST. DEV.
DB DB DB

1 1. 0. 1. 1.1 0.4 0.3
2 0. 1. 1. 1.0 0.4 0.3
3 100.. 0. 1. 1.1 0.5 0.3
4 0. 100. 1. 1.2 0.5 0.3
5 1. 0. 100. 1.6 0.6 0.4
6 0. 1. 100. 1.7 0.4 0.4
7 1. 10. 1. 1.2 0.5 0.3
8 1. 100. 1. 1.3 0.5 0.3
9 1. 100. 100. 1.4 0.6 0.3
10 1. 1. 1. 1.5 0.5 0.4
11 1. 0. 1000. 0.9 0.3 0.3
12 1. 100. 1000. 2.2 0.4 0.5
13 1. 0. 9500. 1.4 0.6 0.4
14 1. 100. 9500. 1.1 0.4 0.4

AVERAGE 1.3 0.5 0.3 .,% -

I.,
S2

• S°

".1%°

.. \.',, .. = . '..'.,.., ,." ." ,.,.,\.. .. .,. , .. '... ,,.-,.', ." -- ,'.. ,<, ', -, .... .- ,.- .... .. ... . ,- ,' ,;,. .. '... ,,.- .,-,," . .- .- . ,- . % '. '.'

,.T,'4 -,,4.-', t, ,',.. .L,,'. q : ., :.,L.'. .'/.L. .
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The mean difference between theory and Equation 3.7 is defined as

the geometric average of differences at each value of T/T examined,

In decibels, for a set of scattering strength parameters, or.

lii

(dB)- EI (dB) (4.1)

where E is the absolute value of the difference of the predicted '. ..

SNR and the simulated SNR, in dB, for a particular value of T/Ts . .5

Similarly, the standard deviation of differences is computed by
I .A

N .

UDATA (dB) -L 1/2 (4.2)

4.1.2 Calculation of Comparison Data. For a particular set of

scattering strength parameters acs, aHI, UNo Equation 3.7 is

used to generate the theoretical SNR prediction for receiver

integration times from equal to the transmit pulse length, T/T -

1.0, to T/Ts W 11, which encompasses the entire scattered signal.

The prediction equation is evaluated at increments of one-half the -

transmit pulse length between these two values.
-. 5

The simulation SNR is also generated for each set of scattering L _

strength parameters, and the 21 values of T/Ts between 1.0 and 11.

100 realizations of the random model, which are assumed to be

independent since each starts with a unique seed value, are linearly

-- 4-

4 r. ' -'- ;" -. -'-- ; '."-- '-- " ':_ ' -'. . .-' " 4 '.•.' .". ..." ".'.. .',• -"................-.................." ".'..
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averaged. Ten times the logarithm of the average value is then

compared with the predicted value.

.,1.

*It is important to note that the statistics of the differences

between theory and model listed in Table 2 are calculated using only

19 of the receiver integration times between T/Ts a 1.0 and 11. Due

to the point scatterer return at T/Ts - 3.0, the differences between

model and prediction equation at T/Ts - 3.0 and 3.5 are not

included. At these integration times, the received signal includes a

statistically small number of samples from the large variance,

highlight return, and therefore displays large fluctuations, even

after averaging 100 simulation realizations. Not until a complete

transmit pulse is processed by the receiver, is a comparison between

the predicted result, and the scattering model output, considered

valid.

4.1.3 Presentation of Comparison Data. In addition to the

results listed in Table 2, two types of graphical comparisons are

used. An example of the first plot type is shown in Figure 3, with

SNR on the ordinate, and T/Ts on the abscicca. The theoretical SNR

prediction is shown as circles, and the model average SNR depicted by

squares. Note the data points at T/Ts M 3.0 and 3.5 are shown in

this figure, though they are not included in the statistical

-comparisons listed in Table 2.

.1 W,

, .% *,- * * * -*", *... ,-~. Is:::
. ~s."."
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FIGURE 3. Comparison of predicted and simulated SNR for
Case 1; acs 1, -HI 0, N - 1. Predicted values
are shown as circles, simulated data shown as
squares.
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The second type of graph is shown in Figure 4. As in Figure 3, ,

the predicted values are shown as circles, and the simulation data as

squares. The absclcca axis is the ratio of transmit pulse length to

receiver integration time, T/Ts. The ordinate is SNR, normalized by

the predicted SNR. Thus the predicted values appear to lie on a

horizontal line at 0 dE. The vertical bars around the normalized

simulation data depict the 90 percent confidence Interval to be

discussed in Section 4.2.

4.2 The Continuous Scatterer in Noise

4.2.1 Continuous Scatterer in Noise. The simplest realization of

the model is the continuous scatterer only in the presence of low

background noise. Figure 3 is a SNR versus T/Ts plot, for Case 1, a

high SNR combination of scattering strength parameters (see Table 2).

The maximum predicted SNR occurs at a value of T/T - 10.5. TheS "

simulation SNR values generally follow the prediction curve, with a

maximum difference between the two curves of 1.1 d8, and a mean

difference of 0.4 dB.

The prediction curve has maximum slope for T/T values less

.
than 4.0. The slope of the SNR versus T/T curve is important, ' '- -.

5
since it indicates the region of receiver integration times that yield

the greatest increase in SNR, for the least increase in integration --

time. This behavior is intuitively correct, since increasing the .. .

Integration time from T/Ts - 1.0 to 2.0, doubles the amount of

5%

*-* ~.*, -- * A - .-
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FIGURE 4. Comparison of normalized SNR for Case 1; acs
a 0 N - 1. Predicted values are shown as
Mrcles, simulated data shown as squares.
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signal energy processed by the receiver. Conversely, increasing the

listen Owindow" from T/Ts  10.0 to 11.0 adds only ten percent more

signal energy.

4.2.2 Distribution of Simulated SNR. The ambiguity - scattering

function analysis presented in Chapter 2 allows calculation of the

mean SNR for a given set of scattering parameters and pulse lengths,

but contains no information concerning the distribution of SNR about

the mean. Using VanTrees' models for noise and the continuous

scatterer, it is possible to derive the distribution of simulated SNR.

4' .

The essence of the derivation is that both received signal and ..,

noise are modeled as independent, zero mean, Goussian processes. The

quantity of Interest, SNR, is the ratio of received signal squared and

noise squared. The SNR is then the ratio of two chi-squared

variables, and the distribution of this ratio is the F distribution.

The interested reader is referred to Appendix C for the complete

derivation.

Knowing the distribution of SNR, the confidence limits of the

simulated data may readily be computed. Figure 4 is a plot of

normalized SNR versus T/Ts for the case shown in Figure 3. As noted .'.

previously, both the simulated and predicted SNR values are normalized

by the predicted SNR, which transform the prediction curve in Figure 3

to the horizontal line In Figure 4. For 90 percent confidence, the

simulated values must lie within + 0.75 dB of the predicted value.

4 ... ',

• •.~ €.;
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This range is depicted in Figure 4 by the vertical bars through each

of the normalized simulation data. Note in Figure 4 that three of the

twenty-two normalized simulation values are not within the confidence

bounds, roughly the number expected for 90 percent confidence.

Also it is worth noting that the confidence intervals for the

matched filter condition are not strictly correct. For T/Ts = 1, the

received signal builds from one sample at t - 0 to the sum of N0

scatterers at t - T . The sequence is triangular. with each sample
5 - .

increasing in degrees of freedom with time. The total number of

degrees of freedom in this sequence are not the same as the rest of

the received signal, which results in a slightly wider confidence

interval than the t 0.75 d8 for values of T/T 0 1.

4.2.3 Comparison as a Function of SNR. The comparison between ~

simulation and prediction appears to be unaffected by the absolute ***

SNR. In addition to the case discussed above, three other

combinations of continuous scattering strength and noise were

examined, with the predicted SNR between -20 to +-95 d8. Representative

examples are shown in Figures 5 and 6.

Note Figures 5 and 6 indicate only small differences between .~''

model and theory for the case of equal continuous scattering strength

and noise spectral density, i.e., 0 dB. The largest difference .

between prediction and simulation is 1.3 dB, and as can be seen in

Ad
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Figure 6 only two of the data points, at T/Ts  1.5 and 3.0, fall

outside the 90 percent confidence interval. Similar results were

observed for for both very low SNR, -20 dB, and very high SNR, +95 dB.

4.3 Point Reflectors in Noise

The other components of the composite scatterer are the two point % k

reflectors. Figure 7 is a plot of SNR versus T/Ts, for two

moderately large point scatterer returns in noise. Since the point W..

scatterer return does not begin until T/Ts W 3.0, comparisons

between the model and theory are not considered valid until

T/Ts - 4.0. Note that abscicca values in Figures 7-10 begin at 4.0

for this reason.

Figure 7 is a SNR versus T/T plot for the two highlight
s

reflectors in noise with a mean SNR of roughly 35 dB. As before, the

predicted values are shown as circles, and the simulation values as

squares or boxes. The largest difference between the two curves is

1.0 dB, with the average difference 0.4 dB, indicating that the model

accurately follows the predicted values. Note that both curves are a

maximum at T/Ts M 4.0 and 8.0, corresponding to receiver integration

times that receive the entire point scatterer reflection and minimum

noise energy. Between the first and second point reflections, and

after the second point reflection, the SNR drops off due to the

addition of noise, and the lack of any additional signal energy.
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Tegood agreement between theory and model is also observed in

the normalized SNR versus T/T splot, Figure 8. Three of 16

* simulation values fall outside the confidence interval. No systematic

or periodic differences between the two curves is apparent. 0

A low SNR case is shown in Figures 9 and 10. Note the rapid

decrease in SNR between the point reflector returns when no continuous

scattering component is present. Again, the simulated values of SNR

closely follow the predicted values, and the normalized data, Figure

10, shows only a single point out of 16 outside the 90 percent

confidence interval.

4.4 The Composite Scatterer in Noise

4.4.1 Composite Scatter in Noise. A complete realization of the

model includes reflections from two point reflectors, of variance

2aHIVto the continuous scatterer return. The locations of the

point scatterers are fixed to T/T5 values of 3.0 and 1.0. Two

examples of the envelope of the signal reflected from the composite

scatterer are shown in Figures 2 and 11. The point scattering

strength in Figure 2 is 10 times the point scatterer strength in

Figure 11, but in both cases, the variance of the point scatterers is

large compared to the continuous scatterer and noise...-

-' .1P"
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The SNR versus T/T5 plot for a high SNR, large point scatterer

reflectivity case is shown in Figure 12. For values of T/Ts less

than 3.0, the signal energy is due soley to the continuous scatterer.

With the onset of the first point scatterer reflection, the SNR

rapidly increases, with the prediction curve reaching a local maximum -o

at T/Ts = 4.0. Between the point scatterer returns, the SNR falls

off 3 dB, and reaches a second maximum with the arrival of the second

point reflection. Differences between simulation and prediction for

this example are roughly equal to the differences seen in the previous

sections. Again neglecting data at T/Ts - 3.0 and 3.5, the average

difference between the two curves is 0.5 dB, with a maximum difference L ,

of 1.3 dB, at a value of T/Ts - 10.0.

The normalized SNR plot for this example is shown in Figure 13.

The majority of the normalized simulation values fall within the 90

percent confidence Interval. Only the data at T/Ts - 6.0 and 10.0

are outsides these limits. It is important to note that the composite

scatterer data, as well as the component scatterers individually, does .

not display any apparent pattern in the differences between simulation

and prediction.

JL

Figure 14 is a SNR versus T/T plot of composite scatterer data
5

for point scatterer reflectivities 1/10 the strength of the example .

shown in Figure 12. The predicted SNR values for T/Ts less than 3.0

are the same in both Figures 12 and 14, though plotted on different

scales. The onset of the first point scatterer reflection in Figure

• i ",: 54
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14, smaller reflectivity, is less dramatic than in Figure 12, larger

reflectivity, with the predicted SNR increasing only 2 dB. over the

continuous scatterer level. The prediction curve in Figure 14 does 4

dereseslightly between the point scatterer returns, as expected,I .

and umpsup at the start of the second point scatterer return. Note

thatthedifferent scales between Figures 12 and 14 give the

appearance that the simulation values are in Figure 14 do not follow

the prediction curve as closely as the example shown in Figure 12.

However, the differences between theory and model are roughly equal to

the previous example, as shown in Table 2.%

The normalized SNR versus T/T s plot for this set of scattering

parameters is shown in Figure 15. Four of the 19 valid simulation

normalized SNR values are outside the 90 percent confidence limits,

but the simulation values are more closely aligned with the normalized

prediction values than the data shown in Figure 13.

4.4.2 Effects of Simulation Sample Size. All of the simulation

data presented up to this point was obtained by averaging 100

simulation realizations. The differences between model and theory may

* be reduced by increasing the number of averages used in the

1comparisons. Figure 16 is a SNR versus T/T s plot for the set of

scattering parameters shown in Figure 12, but obtained using ther
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average of 1000 simulation trials instead of 100. The prediction

curve values are identical between this figure and Figure 12, as

expected. However, the simulation values lie much more closely to the

prediction curve for the 1000 trial average than for only 100 trials.

The mean difference between the theory and model values in Figure 16,

is only 0.2 dB, compared to 0.5 dB, for Figure 12.

The excellent agreement between the prediction equation and model

is also observed in the normalized SNR versus T/T5 plot, Figure 11.

Only the data point at T/T - 3.5 lies outside the 90 percent

confidence limits. -

P..e



51

3.0 .. ..

51 '~.. "....

Co-. I

'+ 
+ 4 4.

0 4. -

-3.0 3I,,

-I. -i=h3. 5.''.7- 9

FIGURE 17. Comparison of normalized SNR for Case 8; a

%..%...
,I -0.00 O N -.. I- Smlae.-.vles.i~n'-b

,~*%.% ,'"

•..' d. %

fnto.Pei tedvau s are shon-s crces

W.-.-.. ... . 4.* ~4~ -~~* * * * * ~ . .*. - ~ :.*..*.~**. *.* **.%.. . . . .

F~aRE17 Compar ....n ..f normalized* SN o Cas.8;.\. = , . .



:::7"

52

CHAPTER 5

RECEIVER PERFORMANCE FOR CORRELATEO CONTINUOUS SCATTER

5.1 Modifications to VanTrees' Model

5.1.1 Introduction. The model of the range spread scatterer,

formulated by VanTrees, was simulated as a set of equl-spaced point

reflections. The reflectivity of these point scatterers is modeled as

sample functions from uncorrelated Gaussian processes. In this

chapter the model is modified to allow varying degrees of

interdependence, or correlation, between the individual point

reflections that comprise the continuous scattering return.

This modification violates the conditions under which the

scattering function is defined in Chapter 2. Indeed, for correlated

scattering, the scattering function must be replaced with the more

general time-frequency correlation function [18]. By comparing

simulated SNR. produced using the correlated continuous scatterer, and

the predicted SNR, which assumes uncorrelated scattering, the effects

of correlated scattering on the validity of the prediction may be ''

examined.

5.1.2 Simulation of the Correlated Continuous Scatterer. The

assumption of uncorrelated scattering is equivalent to assuming the

spectrum of the reflection process has infinite, or at least greater

than half the sampling, bandwidth (19]. Correlation between the

%*' '.
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continuous scattering components may then be achieved by low or band

pass filtering the continuous scattering sequence. The degree of

correlation will be Inversely proportional to the filter bandwidth.

Eight filter bandwidths are used to generate varying degrees of

correlation. In normalized frequency, transmit frequency divided by

the sampling frequency, the normalized filter bandwidths range from

0.49, almost uncorrelated, to 0.01. almost perfectly correlated. The

actual shape of the filter response is relatively unimportant, as is

the difference between low and band pass. The actual filters used are

based on a low pass, cosine tapered, frequency sampling filter [20].

Figures 18 and 19 are examples of the filter frequency response for

normalized cutoff frequencies of 0.49 and 0.01.

To produce the correlated scattering sequence, the uncorrelated

sequence is convolved with the filter impulse response. The filter

output is then normalized by the ratio of the input sequence energy to

the energy in the filtered sequence, producing a final, correlated

scatterer, with the same total energy as the original uncorrelated

sequence. This normalization insures that changes in the receiver

* output SNR are due solely to the correlation among the continuous

scattering components.

Figures 20-24 are plots of an unfiltered sequence and the output

of four filters, in decreasing bandwidth. Figure 19, generated using

a filter bandwidth of 0.49 is indistinguishable from the unfiltered

A.~~~ 'jA- 1
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data. As the bandwidth shrinks, the sequence appears more sinusoidal

than random, as expected. Note the energy of each sequence in

Figures 20-24 is identical, 65-95 dB. To generate the correlated

composite scatterer, the two point reflectors are then added to the

filtered continuous scattering sequence at samples 300 and 700, as -

discussed previously.

5.2 Correlated Continuous Scatterer Results

5.2.1 SNR Comparison versus Bandwidth. Table 3 lists the

comparison statistics for the correlated scatterer simulation and

predicted uncorrelated SNR. The related figures are 25-29. As with

the uncorrelated continuous scatterer data, comparisons between the

simulated and predicted SNR values, do not include data at T/T5 =

3.0 and 3.5.

In Figure 25, the filter bandwidth is large, and the comparison

between simulation and prediction is quite good. Indeed, the

statistical comparison for this data set is as good as any

uncorrelated data comparison. The quality of the comparison is also

seen in the normalized comparison, Figure 26. Note the majority of

the prediction values fall within the 90 percent confidence interval;

only the values at T/T W 5.5 and 7.0 are outside this range. The

average difference between simulation and prediction is 1.1 dB,

comparable to all the uncorrelated scattering data.
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TABLE 3- Scattering Strength Parameters and Statistics of Differences

between Simulated and Predicted and Simulated Signal-to-Noise Ratios
Assuming Correlated Continuous Scattering.

STANDARD DEVIATION OF
SCATTERING MODEL DIFFERENCES BETWEEN

PARAMETERS MODEL AND THEORY
(Average of all values
of T/Ts.)...,

CASE NO. 8W 0cs OHI 0N MAX MEAN ST. DEV.OcB OOB OON-
06 DB DB

15 0.49 1. 0. 1. 1.1 0.4 0.3
23 0.40 1. 0. 1. 2.5 1.2 0.6
16 0.25 1. 0. 1. 4.3 3.2 0.6
24 0.15 1. 0. 1. 6.8 5.5 0.6
17 0.10 1. 0. 1. 8.2 7.1 0.6
25 0.05 1. 0. 1. 11.0 10.1 0.5
26 0.02 1. 0. 1. 15.2 14.1 0.6 .
18 0.01 1. 0. 1. 18.2 17.3 0.6
19 0.49 1. 100. 1. 1.3 0.4 0.3
20 0.25 1. 100. 1. 4.3 1.1 1.1
21 0.10 1. 100. 1. 7.6 1.9 2.6
22 0.01 1. 100. 1. 17.3 7.5 4.7 "!

.'. . % .

%. %: 1
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In Figure 27, the filter bandwidth is reduced to 0.25, and the

simulated SNR shows a 3 dB gain at all values of T/Ts over the

predicted SNR. However, the slope of the two curves are similar, and

as indicated by the relatively small standard deviation associated

with the simulation data, and the correlated scattering results

display no more variation on a point-to-point basis than the

uncorrelated scattering simulations. No normalized data is presented

since for this bandwidth, all the predicted values fall well outside

the uncorrelated confidence intervals. '-

For a bandwidth of 0.1, Figure 28, the mean SNR difference has

increased to 7 dB, but the shape of the correlated scattering data

curve is similar to the prediction curve. In addition, the variation

of the simulated data about the mean offset is comparable to

uncorrelated scattering data.

The 0.01 filter bandwidth, highly correlated data, shown in

Figure 29, has a similarly small variation, but the mean offset is

greater than 17 dB, and independent of T/T . If there was some
5

dependence on the absolute value to T/Ts, we might expect a linear

gain in SNR with increasing T. This behavior would increase the

standard deviation of the SNR, but the values listed in Table 3 appear

to be equal to the uncorrelated scattering data. '-

I. , -

r.4
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5.2.2 Corrections for Correlated Scatterinq. The SNR comparisons

in Figures 25-29 suggest a correction factor might be applied to the

uncorrelated prediction to account for the presence of correlated

scattering. Two different types of curve fits are employed. The

first Is suggested by the simulation data, and assumes the correction

equation is of the form,

SNR Gain (dB) = e (5.1)

where SNR Gain is the mean difference between the predicted SNR values

and correlated simulation SNR; f is the normalized filter bandwidth,

and it is assumed the SNR Gain at 0.5 is zero. Several values of the

coefficient a were plotted to obtain a empirical best fit. Figure 30

is a plot of the SNR Gain versus filter bandwidth for the eight cases

examined. Also plotted are three realizations of Equation 5.1, with

values of a - 5.6, 5.8 and 5.9. All three curves provide a reasonable

fit for frequencies greater than 0.25. At frequencies less than 0.25, ,

all the the fitted curves predict too large a SNR Gain, by 1-2 dB.

For very small filter bandwidths, the gain indicated by the data

appears to increase much faster than any of the fits provided by

Equation 5.1.

A second fit to the data is a simple polynomial fit. For only 8

data points, the degree of the fitted polynomial is restricted to

between 2 and 4. Table 4 lists the coefficients computed by the IMSL

routines RLFOTH and RLDOPH for the three orders examined [21]. A plot

..*:...

'-4-...
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FIGURE 30. Exponential fit to SNR gain versus filter bandwidth
for e-5.6, 5.8 and 5.9. SNR gain obtained from

* simulation is shown as the solid line. A
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* TABLE 4 -Coefficients of Polynomials Fitted to Continuous Correlated
Scatterer SNR Gain versus Filter Bandwidth Data (See Figure 33). '-

POLYNOMIAL AO Al A2 A3 A4
DEGREE L j

2 15.1 -80.9 105.1
3 17.2 -132.8 401.4 -411.3
4 18.3 -194.5 1025.5 -2434.8 2041.9

%.
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of the data with the three fitted polynomials is shown in Figure 31.

Clearly, the accuracy of the fit increases with increasing polynomial
,.u , -

degree, though each increase in order adds an additional inflection ,

point not indicated by the data.

Figure 32 plots the best mean square fit for both models and the

SNR Gain data. The quality of the polynomial fit is clearly better

than the exponential model, particularly in the frequency range from

0.2 to 0.05 Hz. The fourth order polynomial equation appears to be

the most accurate fit to the correlated scattering gain, and might be

used with the uncorrelated scattering prediction to estimate the

correlation of an actual scattering process.

5.3 Composite Correlated Scatterer SNR Comparison

Four cases examine the correlated continuous scatterer with two ..

large amplitude, point reflectors. Table 3 lists the simulation and

uncorrelated scattering prediction comparison statistics, for constant

scattering strength parameters and increasing degrees of continuous

scatterer correlation. The related figures are 33-38.

In Figure 33, for a filter bandwidth of 0.49, the comparison

between simulated and predicted signal-to-noise ratios is quite good.

As with the uncorrelated scatterer data, the greatest difference

between simulation and prediction occurs at T/Ts = 3.5. an

indication that the SNR is dominated by the point scatterers returns

% %. . ... " . . . . . . .
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FIGURE 31. Polynomial fit to SNR gain versus filter bandwidth
for polynomial orders, N, 2, 3 and 4. True SNR gain
shown as solid line.
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FIGURE 32. Best fits for polynomial and exponential models to SNR
gain versus filter bandwidth. True SNR gain shown as
solid line.
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FIGURE 33. Comparison of uncorrelated continuous scattering SNR-
prediction, and correlated scattering simulation for
Case 19; Ocs - 1. 0111 100, ON - 1, filter
bandwidth - 0.49. Predicted values are shown as
circles, simulated data shown as squares.
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FIGURE 34. Comparison of normalized uncorrelated continuous
scattering SNR prediction, and correlated scattering
simulation for Case 19; Ocs - 1- OH - 100. N  1,
filter bandwidth = 0.49. Predicted values are shown
as circles, simulated data shown as squares.
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FIGURE 35. Comparison of uncorrelated continuous scattering SNR
prediction, and correlated scattering simulation for
Case 20; cs =1, OH1 = 100, N = , filter

bandwidth = 0.25. Predicted values are shown as
circles, simulated data shown as squares.
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filter bandwidth - 0.25 . Predicted values are shown
as circles, simulated data shown as squares.
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' after T/Ts = 3.0. For this case, any offset introduced by the

correlated continuous scatterer is smaller than the variation of the

uncorrelated scatter. The normalized SNR comparison, Figure 33, also

.4! indicates the quality of the SNR comparison is good. The only points

that lies outside the 90 percent confidence interval are associated

with the two point scatterer returns.

Figure 35 shows the SNR comparison for a normalized filter

bandwidth of 0.25. The coiparison of simulation and prediction prior

to the first point scatterer return shows that the correlated

scattering levels are 3-4 dB greater than the predicted uncorrelated

values, with the greatest difference 4.3 dB, at T/Ts = 1.5. Beyond

the first point scatterer return, the comparison between simulated and

predicted levels appears to be reasonably good. The added energy due

to the correlited scattering levels is still 10 dB below the SNR

produced with the point scatterers returns, and therefore does not

appear to significantly add to the overall SNR.

The effects of the correlated scatter for this filter bandwidth

" also appear in Figure 36, normalized SNR versus T/Ts. The data

• prior to the point reflection return at T/Ts M 3.0 is roughly 3 dB

above the predicted levels, and well outside the 90 percent confidence

interval. The data after the first point scatterer return displays

_° .

.4 . , .,, , ' ' , ' . , ' , . ,. . . '. , , ' .. .,.. .. ... 
•
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more point to point variation than previous data sets, but no

systematic error is apparent. If the correlated scatterer affected

this portion of the data, a similar, but smaller positive offset of JsVL~

the data might be expected. Since this is not evident, it appears the

gain due to correlated scattering is still insignificant compared to

the point reflector returns.-5..

For a filter bandwidth of 0.1, Figure 37, the simulated 5

5.: correlated scattering values prior to the first highlight return are

-, roughly 7 d8 higher than predicted levels. 8eyond the start of the p

first point scatterer return, the SNR comparison is still good. but

the simulated data shows a slight, -0.5 dB, positive bias.%

The comparison for a narrow filter bandwidth, 0.01, is shown in

Figure 38. The simulated level prior to the first point scatterer

reflection are greater than the predicted levels including the point*5a
scatterer returns. As a result, the correlated continuous scattering

is the dominate scattering process at all values of T/T . Note the
s5%~

5- simulated SNR curve rises only 4-5 dB after the point scattering

returns, an indication that the correlated scattering and highlight

scattering energies are roughly equivalent. The SNR gain prior to the

5. point scatterers is roughly 17 dB. as listed in Table 3.

P-LA
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CHAPTER 6

CONCLUSIONS

6.1 Summary and Conclusions

6.1.1 Models. In this thesis, results for an analytic model and .- %

computer simulation have been compared under a variety of conditions.

The model assumes that a transmit pulse of duration Ts propagates

through a lossless isotropic medium and is reflected from a randomly

rough, range spread scatterer. The scatterer is modeled as the sum of

two components. The first is a continuous line scatterer, and the

second, two large amplitude point reflectors, whose locations are

fixed along the length of the continuous scatterer. The reflected

signal is the convolution of the transmit pulse and a random scatterer

whose average reflection characteristics are described by the target

scattering function, plus white, Gaussian noise.

41.

The signal is processed using a complex crosscorrelation

receiver, and the output is examined as a function of increasing

receiver integration time, T. Integration times from T/Ts - 1.0.

integration time equal to a transmit pulse length, to T/Ts - 11.5, a

time that is slightly greater than the duration of the reflected

signal are examined. 8y assuming closed-form expressions for the

scattering function and transmit and receiver processing waveforms, a.>-

the output of the receiver may be expressed in terms of the scattering

function and the receiver crossambiguity function. The mean receiver

.,,4+ ,, . ", ..J _,. ;. . ;_,'. "",-.' .': ' ,"", :""", ': -:. , :";"+ "+ .'.-""""", .:. .: :" . .." . . ,""-""", ". -.-"- - .,"-
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output is written in terms of the variances of the various target

components and the ratio T/T s predicting the receiver output signal

energy to noise energy ratio.
.F..

6.1.2 Simulation. These models are simulated on a computer to

test the validity of the SNR prediction equation. The continuous

scatterer is simulated as a set of equi-spaced, uncorrelated, complex,

Gaussian, point reflectors, each of zero mean and equal variance.

This model is taken from VanTrees for a range spread scattering

function. The point scatterer model is the slowly fluctuating point

target, also from VanTrees. The point reflectors are simulated as two

uncorrelated, complex, Gaussian numbers, whose variance is large

compared to the variance of the continuous scattering components. The

average output of the correlation receiver is computed by averaging

100 realizations of the signal and passing it through the receiver,

and separately 100 noise sequences, for constant scattering strength "-"

parameters. These two results are then divided to obtain the

statistic to compare with the prediction equation.

6.1.3 Results and Errorl. Agreement between simulation and

prediction is quite good, with the mean error less than 0.5 dB. The

quality of agreement is independent of the absolute SNR, the relative

scattering strengths of the scattering components, and is generally

independent of the receiver integration time. It is apparent from

these comparisons that the prediction equation accurately predicts the

receiver output for all the scattering strength and T/Ts ratios

"-.-"
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examined. This further validates the analysis of the model using

scattering and ambiguity functions, allowing this technique to be

extended to more complex scatterers and waveforms. However, two types

of disagreement were identified, and can be traced to either a

transition between the dominate scattering components or to the

effects of averaging over a finite set of simulation values.

The first type of comparison difference occurs at receiver

integration times that include the onset of the first highlight

reflection. These times, at values of T/T5 = 3.0 and 3.5 correspond

to processing the reflected signal on the start of the first point

scatterer reflection. For T/Ts M 3.0, only a single sample of the

large amplitude reflection is included with the continuous scattering 1

return. For T/T5  3.5. half the first point scattering return is

included. The comparison difference for data at T/T5 - 3.5 is

generally 2-3 d8 greater than the overall mean comparison difference.

Since a small number of large values are being averages, when compared N

to either greater or smaller values of T/T5 are averaged, it is

behavior is not seen in the comparison at T/Ts - 3.0 because the

energy in the single point scatterer sample included by the receiver

is small compared to the energy in the 300 continuous scattering

samples, and does not effect the estimate of signal energy, as does 50

samples for T/T5  3.5.

16

, .

1P



86

An independent confirmation of this conclusion corns by

increasing the number of model realizations averaged to obtain the

simulation comparison value. While this is cost prohibitive for all

combinations of scatterers; and receiver integration times, comparisons

of 1000 and 10000 averages show the comparison error at T/T5 a 3.5

declines dramatically. Indeed, for large numbers of signals in the

average, all the simulation data approaches the predicted values. It

is concluded that the differences seen between simulation and

prediction outside the region near T/T5 M 3.0, the second type of

error observed, can be reduced by increasing the number of model

realizations used to compute the average signal and noise energies.

6.1.4 Correlated Scattering. A modification of the continuous

scattering model was made by filtering the continuous scattering

seq ;ence to produce a sequence with correlation between the continuous *..

scattering components. The scattered signal is processed as described

above, and the averaged result compared to the prediction for

uncorrelated scattering. 1

For the correlated continuous scatterer only, the quality of the

comparison degrades with decreasing filter bandwidth. In all cases,

the simulated SNR increased above the prediction with decreasing

bandwidth. The largest mean difference observed is 17 dB, for a

normalized filter bandwidth of 0.01. This increase in energy over -
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the uncorrelated value is termed coherent SNR gain. It appears the

correlation between the continuous scattering components adds coherent

energy to the reflected signal, more like a deterministic spread

component.

This effect Is also observed with the composite scattr r

th oeen nry except for very smell filter bandwidths. For

mildy crreltedscatterer the prediction and simulation disagree

prior to the first highlight return, but the energy in the point

scatterer returns is large, and beyond T/T5 a 3.5, the simulation

and prediction agree quite well. With very correlated scattering, the

coherent energy dominants, and the point scatterer returns are barely

noticeable for all values of T/T s. in general, a filter bandwidth

of 0.05 or less was necessary for the coherent scatter to dominate, 4

using a point scattering to continuous scattering strength ratio of

100.

6.2 Recommendations for Further Study

The encouraging results of this thesis imply the ambiguity

vait fscatterers and receiver waveforms. This is not a new -

cocuinor result, rather a further demonstration of fact. Theh

simlatonresults and predictions used in this thesis in particular

suggest further efforts in two areas.
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The first area is to increase the complexity of the scattering

model. Straightforward modifications might include a time varying

continuous scattering amplitude, several point scatters with random

locations. The prediction equation can be similarly modified, subject '_'

to the restriction that the modification can be expressed analytically,

in either a deterministic or statistical sense. Adding Doppler . .

spreading Is also possible in the model, but more difficult to include

in the analytic prediction.

The other set of potential modifications to the model included an

investigation of the effects of various processing waveforms. This is

a simple change in the model, but requires a reworking of the

prediction equation to Include the new crossambiguity function. The

value of this type of modification allows evaluation of very complex

waveforms with a simple, well-behaved, scatterer.
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APPENDIX A

DERIVATION OF THE CROSSAMBIGUITY FUNCTION '

The general ambiguity function is defined as

A( ,) f(z--y±)(zt.weidaZ dz~ (A-1)

where

2

a.r

0

W 00

where 7and w.0 are the delay and doppler of the actual scattering

function and r and w. are the delay and Doppler assumed by the receiver.

transmit waveform with a delayed and shifted version of itself (22].

The function A(1rEd') is referred to as the autoambiguity function of

the signal f(t). this result may be extended to two different

waveforms. The crossambiguity function of f(t) and g(t) is then

defined as,

X(-'w)f(- *zT Jw z (A-2)
'a2 2 1.

ge -cr' !t)I 2 ..
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-. . W.

and is a measure of the mean square error of one signal, in our case

the transmit signal, with a delayed and shifted version a second

signal, referred to as the receiver processing signal.

T(t) and ?(t) are assumed to be of the form,

T T

S .. 1.
1 =TI

im -< t <2 (A-4)

where T >T

Equations 3 and 4 imply the envelope of the transmit signal is

assumed to fall completely within the duration of the processing "

signal and T < T. Substitution of these signals into Equation A-2 7

yields '.

T ,.

I 2 1 j t 2
IX'.) e dt (A-5)

'"X II e') TI - e-" T
-J
s -s
2

-'--) T (A-6)

1 2

l Ff;Ts"."-,'

..
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Defining sinc(x) dS sin(x)/x, and multiplying Equation A-7 by

2Ts/2T yields

)T sinc(-) (A-).

'~ ~ TT ""

sinc2( )3  (A-9)

-t. -. -

.%ft•
f. f't'

f, -t

--'ft f- -

,-', ":

ft-fti

ft ,-- . "f ,"t - J 'o " ". r l : r * . . J r ; J " .. . . . ' , , " . ; " " " . " • " - .' ' ' . , . . , .
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APPENDIX 8

GENERATION OF RANDOM NUMBERS

8.1 Generation of UniforM Random Numbers

The target scattering simulation uses the operating system

supplied uniform random number generator, RAN, to compute uniform

numbers in the range [0,1] [23]. The first call to the generator

requires a unique integer seed, which should also be large and odd.

This seed initializes the generator, and is calculated by doubling the

value of the computer system time clock, in seconds, and adding one.

Twenty additional calls are then made to RAN, to produce the first

seed value used for the scattering simulation. Since the simulation 4

data was computed over a number of days, none of the original seeds

were identical, and it is reasonable to assume the sequences of random

* numbers generated used in the simulation are statistically independent

from each other.

8.2 Generation of Gaussian Numbers

Each individual scatterer is modeled as a sample function from a

complex Gaussian process. To generate these scatterers in simulation,

two real, independent Gaussian numbers are required. Each pair of

numbers is obtained by successive calls to the Gaussian number

Generator GGNML, a subroutine in the IMSL Mathematical Library (24].

The generator output was tested for two statistical properties;

'4

77-
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distribution of generator outputs, and correlation between sequences

generated with different initialization seeds.

Figures 39 and 40 are histogram plots for GGNNL outputs for 100

and 1000 sample sets, respectively. While the theoretical values of

the mean and standard deviation are 0 and 1, the histogram of the 100

sample set, Figure 3 has a man of 0.04 and a standard deviation of

0.92. A chi-squared test was performed on this set, and the

assumption of Gaussian distribution was satisfied with 80 percent

confidence E25]. For the 1000 sample set, the mean and standard

deviation are 0.01 and 1.01, very close to the values of the

continuous distribution. The confidence that this sequence is-

Gaussian distributed is greater than 95 percent. For sets of greater

than 10000 samples, the man and standard deviation are equal to the.7

continuous distribution values, and on the basis of these tests, it is

a'concluded that the random number generator GGNNL does produce%

sequences of numbers that are Gaussian distributed.

The second test applied to these sequences gives a measure of the

independence between samples generated with different initial seed

4%values. Figure 41 is a representative plot of the autocorrelation of
**44 a 1024 sample set. The ordinate of the plot is correlation magnitude,

4% normalized between -1 and 1. The abscicca is delay, in units of

samples. The correlation magnitude is less than 0.1, beyond 10

samples of delay. This indicates that the sequence is poorly

.1.J
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correlated with itself, a indication that successive generator outputs .

are uncorrelated.

A representative crosscorrelation between two sequences generated

with different initial seed values is shown in Figure 42. Unlike the

autocorrelation example, where the correlation magnitude at a delay of
zero samples is unity, the crosscorrelation magnitude is low across .-)all delay. These results indicate that the Gaussian number generator N-J
outputs are reasonably uncorrelated with each other. This result is

expected, since the theoretical distribution values are defined to be

statistically independent (26]. While statistical independence of the

generator output cannot be inferred on the basis of correlation, that

the outputs show poor correlation, both auto and cross, is sufficient

for this thesis to validate the random number generator output [27].
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FIGURE 42. Crosscorrelatlon of random number generator
output for a sample set size of 1024.
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APPENDIX C 
_.

CALCULATION OF VARIANCE OF SIGNAL-TO-NOISE RATIO

The signal-to-noise ratio is computed by evaluating 41. -.%

N %
1 F Sk I,.-,

i W (C-1)SNR - kN (I-) -

I1 E lNk 12

N

W k (C-2)
N

.jNkI
and

S R (+ j S (C-3)

where S and S are zero mean Gaussian variables. Therefore S is

R I
with 2 degrees of freedom. Similarly, Nk is X with 2 degrees of

freedom. The sum of N chi-squared variables is also chi-squared. with

2N degrees of freedom.

* Ir

. %- : l~
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From Nuttall [28], the POF of gamma variates is

PxlU) - Puv-lexv(-,au)(C4

6 - (u) (C-5)P plul i

y " r(u)

and the POF of the ratio z - x/y for x and y independent is

rr( ) r(r -P_ z(u) - (~) m! (C-6)-.-

(I +ru)'+ "

where

r *v (C-7)

For the case of interest -w N, an integer. Equation 6 may

be reduced to,

_______ N-1
p U) as(2N-1) V (C-8)

I.,.

fP u du (NI!u 9r(ru N-1(C9
J Z z f (N-i )! 2 0i+ru) 2N(C9

,..mc-) -

From Gradshteyn and Ryzhlk [29],

dx - (C-10)v-pf(I4.x) (-b

i'I.

Fo h aeo ntrs , nitgr qato a .,

berdce o
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where B(xy) is the Beta function. The conditions for existence of

solution are IBI < w and v > v> 0. Substituting for p and w in

Equation B-10 gives, t

e  (2N-1)! r - 8(N+eN-4) . (C-li) I..-

(N-1): 2

where the conditions on the solution N > 6, N > 1, r < I I all of

which are satisfied. The Beta function is reduced to the ratio of

Gamma functions by the relation [301,

B(x,y) - r(x+y) (C-2)

and Equation 11 is written as

ue  .(2N-1)! .(N .He *,,)! (N-e-l)!.,: -,,-*

u-(N-1)!2  (2N-1)!re (C-13)

The first moment, 9- 1 is,

2 '4

" 2N" (C-14)

The second moment, e 2, is,

2 .
u (2) N(N I)- (C-15) '""''
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and the variance,

Z2 N(N+l) N 2

S(N-)(N-2)r (N-)-16)

N * 2N-1 (C-il)
(_-[)r (Nl1)(N-2)(N-li 2

Equation C-17 is identical in form to the variance of the F

distribution with 2N degrees of freedom [31]. It is therefore

concluded that variance of the simulated signal-to-noise, normalized

by.the ratio of the noise variance to signal variance is F

distributed. Confidence limits may now be computed by calculating

I F(2N,2N) for a specific a

1.4
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